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a b s t r a c t

Epidemiologic evidence indicates a relationship between outdoor particle exposure and adverse health
effects, while most people spend 85e90% of their time indoors, thus understanding the relationship
between indoor and outdoor particles is quite important. This paper aims to provide an up-to-date
revision for both experiment and modeling on relationship between indoor and outdoor particles. The
use of three different parameters: indoor/outdoor (I/O) ratio, infiltration factor and penetration factor, to
assess the relationship between indoor and outdoor particles were reviewed. The experimental data of
the three parameters measured both in real houses and laboratories were summarized and analyzed. The
I/O ratios vary considerably due to the difference in size-dependent indoor particle emission rates, the
geometry of the cracks in building envelopes, and the air exchange rates. Thus, it is difficult to draw
uniform conclusions as detailed information, which make I/O ratio hardly helpful for understanding the
indoor/outdoor relationship. Infiltration factor represents the equilibrium fraction of ambient particles
that penetrates indoors and remains suspended, which avoids the mixture with indoor particle sources.
Penetration factor is the most relevant parameter for the particle penetration mechanism through cracks
and leaks in the building envelope. We investigate the methods used in previously published studies to
both measure and model the infiltration and penetration factors. We also discuss the application of the
penetration factor models and provide recommendations for improvement.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Epidemiologic evidence indicates a relationship between
particle pollution exposure and adverse respiratory and cardio-
vascular health effects, including decreased lung function, asthma,
myocardial infarction and all-cause mortality (Dockery et al., 1993;
Pope et al., 1995; Schwartz et al., 1996; Gold et al., 1999; Klemm
et al., 2000; Peters et al., 2000; Samet et al., 2000; Yu et al.,
2000; Brunekreef and Holgate, 2002; EPA, 2005). Since most
people spend 85e90% of their time indoors (Jenkins et al., 1992;
Robinson and Nelson, 1995; EPA, 1996; Klepeis et al., 2001),
assessing indoor particle pollution exposure is important for
understanding the impact of particle pollution on human heath.
Outdoor particle pollution concentrations are a major contributor
to indoor concentrations. Many sources of outdoor particles
including automobiles, industry and many combustion processes
such as coal-burning (Peterson and Junge, 1971; Gartrell and
Friedlander, 1975; Heicklein, 1976; Spengler et al., 1990; UNEP/
: þ86 10 62773461.
).

All rights reserved.
WHO, 1993), can also result in indoor air pollution. The impact of
outdoor particles on the indoor environment is particularly
important in many developing countries where outdoor particle
pollution is increasing (Lee et al., 1997).

Buildings are typically ventilated using three mechanisms:
mechanical ventilation, natural ventilation and infiltration. All of
these mechanisms can result in the transport of outdoor particles
into the indoor environment, as shown in Fig. 1. Mechanical
ventilation typically includes a supply of fresh (outdoor) air which
contains outdoor-originated particles. Since filters in a mechanical
ventilation system cannot completely remove all particles of
outdoor origin, these particles enter into the indoor environment.
Natural ventilation occurs by moving wind and buoyancy-induced
flow through openwindows or doors, thereby transporting outdoor
particles into the indoors. There have been many studies dealing
with the application of ventilation in both the indoor and outdoor
environment. Ventilation concepts have been used for both indoor
building ventilation (Kato et al., 2003; Huang et al., 2006; Niachou
et al., 2008; Chen, 2009) and the urban environment (Baby et al.,
2008; Bu et al., 2009; Buccolieri et al., 2010). Both indoor and
urban air quality has been analyzed in terms of ventilation
efficiency and breathability concepts. Infiltration refers to the
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Nomenclature

a (s�1) Air exchange rate
C (mgm�3) Particle concentration
Cin (mgm�3) Indoor particle concentration
Cout (mgm�3)Outdoor particle concentration
C _S (mgm�3) Indoor particle concentration that is contributed

by indoor sources
Ci (mgm�3) Ci¼ Cin(t¼ 0)
Cf (mgm�3) Cf¼ Cin( t¼N)
CN (mgm�3) Particle concentration at the inlet of the cracks
d (mm) Crack height
dp (m) Particle diameter
D (m2 s�1) Particle Brownian diffusivity
Fin Infiltration factor
F
!

x (m s�2) An additional acceleration (force/unit
particle mass) term

g!x (m s�2) Gravitational acceleration
K (s�1) Particle deposition rate
nb The number of right-angle bends in the crack
Nescape Number of the escaped particles at the outlet
Ntotal Number of the total particles released at the

crack inlet
P Penetration factor

Pg Particle deposition rate due to gravitational settling
Pd Particle deposition rate due to Brownian diffusion
Pi Particle deposition rate due to inertial impaction
DP (Pa) Pressure difference between inlet and outlet

of the crack
Q (m3 s�1) Airflow rate
_S (mg s�1) Indoor particle emission rate
t (s) Time
u (m s�1) Airflow velocity
uy (m s�1) Airflow velocity at vertical axis
um (m s�1) Average velocity of air in the crack
u! (m s�1) Fluid phase velocity
u!p (m s�1) Particle velocity
V (m3) Volume of the room
vs (m s�1) Gravitational settling velocity of particles
w (mm) Crack width
x (m) Absolute horizontal axis
y (m) Absolute vertical axis
z (mm) Crack length
m (N sm�2) Dynamic viscosity of air
r (kgm�3) Air density
rp (kgm�3) Particle density
3 Particle deposition ratio
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uncontrolled flow of air through cracks and leaks in the building
envelope, which can also result in the entry of outdoor particles.
Residential building windows are frequently closed during times of
the year when the air conditioning system or heating systems are in
use. Comparing with natural ventilation, infiltration results in
a relatively low air exchange rate. Yamamoto et al. (2010) reported
a median air exchange rate of 0.71 ACH (Air Change per Hour)
among approximately 500 residences). In this case, infiltration
becomes the primary pathway for outdoor air and particles
entering the residential spaces. Therefore, understanding the
relationship between indoor and outdoor particles is quite impor-
tant. This paper aims to provide an up-to-date review of both
experiment and modeling on relationship between indoor and
outdoor particles.

This paper summarized the experimental studies as well as
modeling studies for the relationship between indoor and outdoor
particle concentration. Three widely used parameters, i.e. indoor/
outdoor (I/O) ratio, penetration factor and infiltration factor,
were reviewed in this paper. In the section “2. Quantifying the
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Fig. 1. The pathways of outdoor particles entering into indoor environment.
relationship between indoor and outdoor particles”, we review
the definitions of the three parameters as well as the reasons why
choosing them. In the section “3. Experimental study review”, we
review the measurement methods and investigate the results of
experimental data for the three parameters. The applications of
penetration factor measurement methods are also discussed. In the
section “4. Modeling study review”, we evaluate the models of the
penetration factor only, since most studies on I/O ratio and infil-
tration factor are based on experimental data. We conclude by
discussing the application of these penetration factor models and
provide recommendations for improvement.
2. Quantifying the relationship between indoor and
outdoor particles

2.1. Indoor/outdoor (I/O) ratio

I/O ratio directly represents the relationship between indoor
and outdoor particle concentrations, which is very easy to under-
stand and widely used. Thus, I/O ratio data were summarized in
order to provide a general impression on the relationship between
indoor and outdoor particles. I/O ratio is defined as:

I=O ratio ¼ Cin
Cout

; (1)

where Cin and Cout are the indoor and outdoor particle concentra-
tion, respectively.
2.2. Infiltration factor

Infiltration factor represents the equilibrium fraction of ambient
particles that penetrates indoors and remains suspended. It avoids
the mixture with indoor particle sources, thus, it is worthy to
summarize. Infiltration factor (Fin) is obtained by applying a mass
balance to derive an equation connecting the ambient and indoor
concentrations:
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V
dCin ¼ aPVCout � aVCin � KVCin þ _S; (2)

dt

where V is the volume of the room, t is time, a is the air exchange
rate due to infiltration, P is the particle penetration factor, K is the
particle deposition rate, and _S is the indoor particle emission rate. It
should be noted that the resuspension of particles is neglected in
this equation. All the parameters except V and a are a function of
both time and particle size (Li and Chen, 2003).

Infiltration factor is defined based on the steady-state and zero
indoor particle emission rate case of Eq. (2):

Fin ¼ aP
aþ K

; (3)

when themechanical ventilation system is used, the filter efficiency
can affect Eq. (2). Thus the generalized definition of infiltration
factor can be expressed as:

Cin ¼ FinCout þ C _S; (4)

where C _S is the indoor particle concentration which is contributed
by indoor sources.
2.3. Penetration factor

Penetration factor, P, is defined as the fraction of particles in the
infiltration air that passes through the building shell. Since it is the
most relevant parameter for the particle penetration mechanism
through cracks and leaks in the building envelope, studies about
penetration factor were also reviewed.
3. Experimental study review

3.1. I/O ratio

3.1.1. Measurement methods
Since I/O ratio directly represents the relationship between

indoor and outdoor particle concentrations, there have been many
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Fig. 2. Experimental data distribution of particle I/O ratios in the studies tabulated in Table
classified to the group of PM10. The data in Matson (2005), Guo et al. (2008), Morawska et
0.001e0.5 mm. (Abscissa represents the experimental studies reviewed in this paper.)
studies concerning measurements and data analysis for I/O ratio.
The measurement method for I/O ratio is relatively simple. The
most common used method is installing two particle sample
monitors inside and outside the testing building, and then the I/O
ratio can be obtained. Themost important part of an experiment on
I/O ratio is the study design. According to different research
objectives, researchers choose specific sample buildings tomeasure
I/O ratio under different conditions for comparison.

3.1.2. Data analysis
The experimental data of I/O ratio and corresponding conditions

were tabulated (see supporting information: Table S1 and S3). Fig. 2
shows the distribution of measured I/O ratios in the studies. The
RSP (Respirable Suspended Particle) in Table S1 were classified to
the group of PM2.5. The TSP (Total Suspended Particle) in Table S1
were classified to the group of PM10. The data were separated into
4 groups: PM2.5, PM10, 0.001e0.5 mm, 0.5e15 mm. As shown in
Fig. 2, I/O ratios in these studies vary in a large range (from 0.02 to
31) due to differing measurement conditions. The largest I/O ratio
happened in homes in Nepal where the owners presumably cooked
and smoked in homes without chimneys, while the smallest I/O
ratio happened in an uninhabited telephone switching building
with excellent filtration. The differences among the buildings
including indoor particle sources, geometry of the cracks in build-
ings, outdoor wind environments, ventilation patterns and the use
of filtration result in the enormous range of I/O ratio.

Since there are many I/O ratio studies (77 studies reviewed in
this paper including over 4000 homes), we distilled out the large-
scale studies (larger than 20 homes) as shown in Fig. 3 (PM2.5) and
4 (PM10). The detailed information of other references can be seen
in Table S1 (Abt et al., 2000; Adgate et al., 2002; Adgate et al., 2003;
Anderson, 1972; Arhami et al., 2010; Baek and Kim, 1997; Blondeau
et al., 2005; Brickus et al., 1998; Brunekreef et al., 2005; Cao et al.,
2005; Chan, 2002; Clayton et al., 1999; Davidson et al., 1986;
Fischer et al., 2000; Gotschi et al., 2002; Janssen et al., 1998, 2000;
Kado et al., 1994; Kinney et al., 2002; Letz et al., 1984; Lioy et al.,
1990; Long and Sarnat, 2004; Lunden et al., 2008; Molnar et al.,
2005; Menetrez et al., 2009; Monn et al., 1997; Meng et al., 2005;
PM10 0.001-0.5µm 0.5-15µm

S1. The RSP in Table S1 were classified to the group of PM2.5.The TSP in Table S1 were
al. (2001) (ultrafine particle data) and the data of PM1 were classified to the group of
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Fig. 3. Experimental data distribution of PM2.5 I/O ratios in the large-scale studies (larger than 20 homes) in different cites. The RSP were classified to the group of PM2.5. The
numbers in ( ) represent the number of the sample homes. *Indoor smoking that was definitely mentioned in the studies.
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Monkkonen et al., 2005;Mouratidou and Samara, 2004; Pekey et al.,
2010; Pellizzari et al., 1999; Polidori et al., 2007; Ramachandran
et al., 2003; Sexton et al., 1984; Sinclair et al., 1990; Spengler and
Thurston, 1983; Spengler et al., 1981; Tovalin-Ahumada et al.,
2007; Wu et al., 2005).The summary of the major studies also
shows an enormous range of I/O ratio for both PM2.5 and PM10. As
shown in Figs. 3 and 4, the huge I/O ratio is highly due to the
presence of indoor smoking, such as 3.36 in Portage and 2.33 in
Steubenville (Santanam et al., 1990), 3.07 in Indianapolis (Pellizzari
et al., 2001), 1.67e2.5 in seven U.S. cites (Wallace et al., 2003), 2.13
and 2.18 in Onondaga and Suffolk (Sheldon et al., 1989) for PM2.5
and 2.3 in Indianapolis (Pellizzari et al., 2001) for PM10. Besides,
other indoor combustion process such as the use of fireplace can
also lead to high I/O ratio. The low I/O ratio is strongly related to few
indoor sources, the use of filtration and the tightness of the build-
ings, such as 0.71 for PM2.5 in Riverside which is measured at night
with few indoor sources (Clayton et al., 1993) and 0.48 for PM10 in
Daeguwhich is measured inwinter with the use of filtration (Jo and
Lee, 2006).
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Many researchers focus on one of the influencing factors of I/O
ratio in order to find some conclusive information. However, the
conclusions by different researchers are inconsistent. The following
sections focus on the comparison of different researchers’ conclu-
sions on specific issues such as particle size, ventilation mode,
season variety and so on. For convenience, the I/O ratio was
rewritten as according to Eq. (1) and the steady-state case of Eq. (2)
when a building is naturally ventilated:

I=O ratio ¼ aP
aþ K

þ
_S

ðaþ KÞVCout; (5)

For particle size, many researchers chose to compare PM2.5 and
PM10. As shown in Table S1, the results by Rojas-Bracho et al.
(2000), Monn et al. (1995), Jones et al. (2000), Liu et al. (2003)
show that the I/O ratios of PM2.5 are lower than those of PM10.
The results byMorawska et al. (2001) and Poupard et al. (2005) also
indicated that the I/O ratios of fine particles are lower than that of
coarse particles. However, the results by Li (1994), Evans et al.
(2000), Pellizzari et al. (2001), Colbeck et al. (2010), Wang et al.
(2006) and Rojas-Bracho et al. (2002) show that the I/O ratios of
PM2.5 are higher than that of PM10, which is different from the
previous opinion. The results by Thatcher and Layton (1995),
Weschler (1984) and Geller et al. (2002) also indicate that the I/O
ratios of fine particles are higher than that of coarse particles.
Additionally, the results by Clayton et al. (1993), Li and Lin (2003)
and Riain et al. (2003) show that the I/O ratios of PM2.5 almost
equate to that of PM10. Some researchers measured the size-
dependent I/O ratios for ultrafine particles (0.002e0.5 mm) (Zhu
et al., 2005; Koponen et al., 2001), while other researchers
measured the size-dependent I/O ratios for fine and coarse particles
(Gupta and Cheong, 2007; Tippayawong et al., 2009). However,
they also did not obtain a uniform conclusion of the impact of
particle size on I/O ratio. The most probable reason for the incon-
sistency among these studies is that the measurement conditions
are different. In each study, the deposition rate for PM10 should be
larger than that of PM2.5, while penetration factor for PM10 should
be smaller than that of PM2.5. The characteristics of penetration
factor and deposition rate may cause the higher I/O ratio of PM2.5
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than that of PM10. However, the indoor particle source emission
rates may be quite different between PM10 and PM2.5, which
depends on the characteristics of the indoor sources. It is possible
that the indoor sources emit more coarse particles than fine
particles, while outdoor coarse particle concentration is lower than
fine particles, which may cause the lower I/O ratio of PM2.5 than
that of PM10. However, most of the studies only provide the general
information of the indoor sources, since the size-dependent indoor
particle source emission rates are difficult tomeasure inmost of the
cases.

For air exchange rate, some researchers studied the influence of
ventilation mode, i.e. natural ventilation, mechanical ventilation
and infiltration. The mass balance equation of a sample room with
mechanical ventilation is slightly different from Eq. (2), which has
been described in Thornburg et al. (2001). For mechanical venti-
lated homes, the filter efficiency can strongly affect I/O ratio (Partti-
Pellinen et al., 2000). The results in Zhu et al. (2005) and Chao and
Tung (2001) show that the I/O ratio with windows open is higher
than the ratio with windows closed. However, the results by Guo
et al. (2008) show the opposite conclusion. Also, the I/O ratios
under natural ventilation were compared with ratios under
mechanical ventilation by Baker et al. (1987), Ho et al. (2004),
Poupard et al. (2005) and Gupta and Cheong (2007). However,
there is no uniform conclusion on this issue. The possible reason
may also be due to different measurement conditions. The first
term of the right side of Eq. (5) will increase with the increase of air
exchange rate, while the second term of the right side of Eq. (5) will
decrease with the increase of air exchange rate. In other words, the
impact of the air exchange rate depends on other influencing
factors, such as penetration factor, deposition rate, indoor particle
source emission rate and outdoor particle concentration. For
instance, if there is no indoor particle source, the I/O ratio will
increase with the increase of air exchange rate. However, if the
indoor particle source emission rate is very large and the outdoor
particle concentration is very low, the I/O ratio will decrease with
the increase of the air exchange rate.

Particle penetration factor is another important factor deciding
the I/O ratio. If the building is naturally ventilated by opening
windows, the particle penetration factor should be approximately
equal to 1. However, if the building is ventilated by infiltration, the
particle penetration factor is a strong function of air exchange rate,
particle size and the geometry of cracks in the building envelope
(Liu and Nazaroff, 2001, 2003). The detailed information on the
geometry of cracks in building envelopes is difficult to quantify,
thus most of these studies cannot provide the information.

Deposition rate, which is size-dependent, can also affect the I/O
ratio. There are a number of studies focusing on measuring or
modeling the deposition rate. Lai (2002) reviewed the particle
deposition studies before 2002. Then, there are many studies focus
on the deposition of aerosol particles in chambers under controlled
conditions and in real-life conditions such as apartments and office
buildings (Thatcher et al., 2002; Chao et al., 2003; Wallace et al.,
2004; Bouilly et al., 2005; He et al., 2005; Hussein et al., 2005,
2006, 2009; Lai and Nazaroff, 2005; Chen et al., 2006; Hamdani
et al., 2008). Also, there are some modeling studies on indoor
particle deposition (Zhao et al., 2004; Lai and Nazaroff, 2005; Tian
and Ahmadi, 2007; Lai and Chen, 2007). These studies show that
not only particle size but also other influencing factors such as
airflow pattern, turbulence level, and properties of indoor surfaces
can affect indoor particle deposition. Generally speaking, Brownian
diffusion is an important mechanism for ultrafine particles. Gravi-
tational settling is the most important for coarse particles. And
accumulation mode particles deposit least effectively.

Based on experimental data in the literature, simulation results
also show that indoor particle sources, penetration factor, air
exchange rate and outdoor particle concentration can strongly
affect the I/O ratio (Li and Chen, 2003; Kulmala et al., 1999). The
influence of different seasons on I/O ratio was analyzed in some
studies (Santanam et al., 1990; Lachenmyer and Hidy, 2000;
Schneider et al., 2004; Jo and Lee, 2006; Martuzevicius et al.,
2008). Nevertheless, since the conditions including air exchange
rate, size-dependent outdoor particle concentration are different in
different seasons, there is also no uniform conclusion on this issue.

Generally speaking, the I/O ratio can provide a general idea on
the relationship between indoor and outdoor particle concentra-
tion, nevertheless, it is affected by many influencing factors espe-
cially indoor particle sources, which results in an enormous range
of measured values (from far below 1 to far above 1). Through
comparing different studies, it can be found that all the issues
discussed above have no uniform conclusions. These evidences
strongly demonstrate that the I/O relation is not useful in under-
standing indoor/outdoor particle relationships.
3.2. Infiltration factor

3.2.1. Measurement methods
According to Eq. (4), the linear approach can be used to measure

the infiltration factor. After measuring the indoor and outdoor
particle concentrations under different conditions, the parameters
Fin and C _S can be solved from the regression of indoor concentra-
tion against the outdoor concentration as demonstrated by Ott et al.
(2000). The slope of the regression estimates the Fin, and the
intercept estimates the average concentration of indoor generated
particles ðC _SÞ. This method allows for both steady and non-steady
conditions. The idea for non-steady conditions is that over many
measurements there will be about as many with positive as nega-
tive residuals. This method is very simple and was applied by many
researchers (Dockery and Spengler, 1981; Ozkaynak et al., 1996; Lee
et al., 1997; Lachenmyer and Hidy, 2000; Landis et al., 2001; Long
et al., 2001; Wallace et al., 2003; Allen et al., 2003; Williams
et al., 2003; Reff et al., 2005; Wallace and William, 2005;
Hanninen et al., 2004; Lazaridis et al., 2006; Sarnat et al., 2006;
Meng et al., 2007; Hoek et al., 2008; Meng et al., 2009).

Bennett and Koutrakis (2006) developed an alternative method
for calculating the infiltration factor using time-dependent indoor
and outdoor particle concentrations and air exchange rate.
Assuming there are no indoor particle sources, Eq. (2) can be
rewritten as follows:

Cin;t ¼ aP
aþ K

Cout
�
1� e�ðaþKÞDt

�
þ Cin;t�Dte

�ðaþKÞDt : (6)

Since there are two unknowns P and K in Eq. (6), it was not
possible to obtain two independent solutions for these two
unknown parameters. To determine P and K, they were allowed to
vary independently over the likely ranges of values, 0< K and
0< P< 1, respectively. For each pair of P and K values, they exam-
ined the error between the calculated and measured data. The pair
of P and K values that fits best was determined as the final values.
Then the infiltration factor can be obtained using Eq. (3).

3.2.2. Data analysis
The experimental data of infiltration factors and their

measurement conditions in different studies were tabulated (see
supporting information, Table S2 and S3). Fig. 5 shows the distri-
bution of measured infiltration factor in the large-scale studies
(larger than 20 homes). The infiltration factors measured by
different researchers vary in the large range of 0.3e0.82 for PM2.5,
0.17e0.52 for PM10, since their measurement conditions are quite
different. Generally speaking, the infiltration factors of PM2.5 are
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Fig. 5. Experimental data distribution of particle infiltration factor in the large-scale studies (larger than 20 homes) tabulated in Table S2. The RSP were classified to the group of
PM2.5. The numbers in ( ) represent the number of the sample homes.
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higher than that of PM10, since the strength of deposition of PM2.5
is much weaker than that of PM10. According to Eq. (3), the infil-
tration factor can be affected by the penetration factor, air exchange
rate and deposition rate. When a building is ventilated by infiltra-
tion, the penetration factor is a function of particle size, indoor/
outdoor pressure difference, air exchange rate and geometry of
cracks in the building envelopes. Wind direction and speed can
affect the indoor/outdoor pressure difference and air exchange rate,
thus they are also influencing factors. Again, since the detailed
information on these influencing factors is difficult to quantify,
most of these studies cannot provide it. Besides, the use of
mechanical ventilation with air filter can also strongly affect the
infiltration factor. Higher filter efficiency can reduce the infiltration
factor. For instance, the infiltration factors measured by Hoek et al.
(2008) were relatively smaller than others, since the measured
houses include some using mechanical ventilation system with air
filter.

Infiltration factor represents the equilibrium fraction of ambient
particles that penetrates indoors and remains suspended, which
avoids the influence of indoor sources. Thus it is quite useful for
qualifying the fraction of the total indoor particles coming from the
outdoor environment. However, since it contains the process of
indoor particle deposition, infiltration factor is difficult to reflect
the process of outdoor particles entering to indoors through
buildings.

3.3. Penetration factor

Among the three parameters, the most relevant parameter for
the penetration mechanism through cracks is the penetration
factor.

3.3.1. Measurement methods
There are two kinds of experimental studies on penetration

factor: one is in real buildings, the other is in laboratories.

3.3.1.1. Real buildings. Tung et al. (1999) measured the penetration
factor in an office building for PM10 using the following equation:
CinðtÞ ¼
�
Ci �

_Sþ aPVCout
ðaþ KÞV

�
e�ðaþKÞt þ

_Sþ aPVCout
ðaþ KÞV

¼
h
Ci � Cf

i
e�ðaþKÞt þ Cf ; (7)

where Ci¼ Cin(t¼ 0) and Cf¼ Cin(t¼N). The authors assumed that
there are no particle sources ð _S ¼ 0Þ in the sample room since they
conducted the measurements at night. After measuring the particle
decay curve and air exchange rate, the penetration factor can be
calculated by:

P ¼ ðaþ KÞCf
aCout

: (8)

The same approach was applied by Chao et al. (2003) to measure
particle size-dependent penetration factors in non-smoking resi-
dences. The authors also assumed that there are no particle sources
in non-smoking residences. Different from measuring particle
decay curve (Tung et al., 1999; Chao et al., 2003), Thatcher et al.
(2003) developed a concentration rebound method to measure
particle penetration factor and deposition rate. First the authors
measured the particle loss rate following artificial elevation of
indoor particle concentrations to obtain the deposition rate, then
rapidly reduced particle concentration through induced ventilation
by pressurization of the houses with HEPA-filtered air. Finally they
measured the particle concentration rebound to obtain the pene-
tration factor. In the authors’ opinion, during the particle concen-
tration decay period, when indoor concentrations are very high,
losses due to deposition are large compared to gains due to particle
infiltration. During the concentration rebound period, the opposite
is true. Therefore, the effects of penetration and deposition losses
can be separated.

The methods applied by Tung et al. (1999), Chao et al. (2003)
and Thatcher et al. (2003) that are based on measuring the
particle decay or rebound curve all assume that there are no
particle sources indoors. However, when indoor particle emissions
cannot be avoided, the method developed by Long et al. (2001)
which is based on the linear regression approach can be used.
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After measuring the indoor and outdoor particle concentrations
under different conditions, C _S, i.e. the intercept of the linear
regression Eq. (5), can be obtained. Then, according to Eq. (5),
a linear expression can be rewritten as:

Cout
Cin � C _S

¼ K
P

�
1
a

�
þ 1
P
: (9)

After measuring air exchange rates under different conditions, the
linear expression (Eq. (5)) can be regressed. Then the penetration
factor can be easily obtained.

Based on Eq. (3) and the measured data of the infiltration factor,
Williams et al. (2003) and Zhu et al. (2005) used error analysis that
is similar to the error analysis approach applied by Bennett
and Koutrakis (2006) to obtain the particle penetration factor.
According to Eq. (3), Vette et al. (2001) used the measurement data
of the infiltration factor, air exchange rate and deposition rate to
calculate the particle penetration factor.

3.3.1.2. Laboratory. While measurements in real buildings cannot
control the indoor/outdoor pressure difference, measurements in
laboratories can maintain the pressure differences between the
inlet and outlet of the cracks. Therefore, to understand the factors
influencing particle penetration, some researchers measured the
particle penetration factors in laboratories. Mosley et al. (2001)
conducted an experiment in a chamber which consists of two
compartments of the same size. Compartment 1 of the chamber
simulates the outdoors, while compartment 2 simulates the indoor
space. After cleaning the chamber, particles were injected into
compartment 1 until a certain concentrationwas reached. Then the
particle decay curve in compartment 1, raise curve in compartment
2, and the flow rate were measured. According to the mass
conservation equations, the following equation can be obtained:

CinðtÞ
CoutðtÞ z

PQ
V

thmt; (10)

where Q is the flow rate. According to Eq. (10), the slope, m, can be
obtained. Thus, the particle penetration factor can be calculated:

P ¼ mV
Q

: (11)
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Fig. 6. Data of particle penetration factors obt
Liu and Nazaroff (2003) directly measured the particle concentra-
tions upstream and downstream of a crack in a laboratory setting.
The penetration factor was evaluated as the ratio of the down-
stream to upstream concentration. Jeng et al. (2006, 2007) also
measured the particle concentration at crack entrances and exits
in a chamber to evaluate the penetration factors. These authors fee
that their experimental setup enables particle measurement
without interfering with infiltration flow field, and avoids experi-
mental variation that may have occurred in the Mosley et al. (2001)
study.

3.3.2. Data analysis
The experimental data of penetration factor measured in both

real buildings and laboratories and their conditions were tabulated
(see supporting information, Tables S4 and S5). Figs. 6 and 7 present
the size-dependent experimental data of particle penetration factor
for real buildings and laboratories, respectively. Fig. 6 shows that in
real buildings the penetration factors are in the range of 0.6e1.0 for
particles with diameters greater than about 0.05 mm and less than
2 mm.When the diameter is larger, the penetration factor decreases
due to the stronger gravitational setting. The penetration factor of
PM2.5 measured by Williams et al. (2003) is 0.72, while that of
PM10 measured by Tung et al. (1999) is in the range of 0.69e0.86.
As shown in Fig. 7, particle penetration through cracks is a strong
function of particle size, indoor/outdoor pressure difference,
geometry and surface roughness of the cracks. For large particles,
penetration factors are relatively small due to the effect of gravi-
tational settling, while for ultrafine particles, the penetration
factors are also small due to the effect of Brownian diffusion.
Penetration factors increase with the larger pressure difference and
crack height, which agrees with the finding by Jeng et al. (2006).
Additionally, roughness can decrease the particle penetration
factors (Liu and Nazaroff, 2003).

Comparing the experimental data in real buildings with that in
laboratories (Fig. 8), we see that for particles with diameters in the
range of 0.1e0.4 mm, the experimental data measured in real
buildings are close to that measured in laboratories. However, for
particles with diameters larger than 0.4 mm, it seems that the
influence of gravity is not that strong in real buildings. These large
particle data measured in real buildings only match the data which
was taken under the conditions of higher pressure difference or
larger crack height in laboratories. Results measured by Thatcher
1 10
iameter (µm)

ained from experiments in real buildings.
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Fig. 7. Data of particle penetration factors obtained from experiments in laboratories. Legend example: Liu and Nazaroff (2003) 4 Pa (pressure difference between inlet and outlet of
the crack), 0.25 mm (crack height), 4.3 cm (crack length). “Rough” means the crack is a strand board with rough innerfaces.
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and Layton (1995) show that the penetration factors are near 1 for
particles with diameters in the range of 1e25 mm. Wallace (1996)
also calculated penetration factors very close to 1 for PM2.5 and
PM 10, based on the particlemass data from an EPA study for a large
number of households in the Los Angeles area. These may indicate
that the crack heights are relatively large in these real buildings.
Furthermore, the penetration factors for particles with diameter
smaller than 0.1 mm seem match better than that for particles with
diameter larger than 0.4 mm. A possible explanation is that in
current laboratory-based experimental studies, only particle
penetrations through straight cracks were measured. However,
vertical cracks widely exist in real buildings. For ultrafine particles,
the penetration factor through vertical cracks is similar to that
through straight ones, since the dominating influencing factor is
Brownian effect. While for coarse particles, the penetration factor
through vertical cracks may be larger than that through straight
ones, since the gravitational settling onto the inner surfaces is
much weaker in vertical cracks. This may be another explanation
for the inconsistence between experimental data in real buildings
and that in laboratories. Additionally, the geometry of cracks in real
0
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Fig. 8. Comparison of data of particle penetration factors obtained from experiments
in real buildings and laboratories.
building envelopes may be quite different. L-shaped or double-
bend cracks are common in real building envelopes. Therefore
cracks with different geometries should be further measured in
laboratories to understand the characteristics of particle penetra-
tion through differing types of cracks.

3.3.3. Discussion on application of measurement methods
Since the different measurement methods reviewed above have

both advantages and disadvantages, the application of these
methods is worthy of discussion. For a real house which has been
built, if someone wants to know the particle penetration factors,
the methods applied by Tung et al. (1999), Chao et al. (2003) and
Thatcher et al. (2003) can be used. However, the use of these
methods requires meeting the condition that there are no particle
sources indoors. If the indoor particle emission cannot be avoided,
the method developed by Long et al. (2001) can be used.

To detect the penetration characteristics of a certain envelope
such as a window or a door, the envelope can be tested in labora-
tory and the measurements taken under controllable conditions. In
this case, the methods applied by Mosley et al. (2001), Jeng et al.
(2006, 2007) can be used.

The methods applied by Liu and Nazaroff (2003), Jeng et al.
(2006, 2007) are more suitable for studying the influence of
factors on particle penetration such as particle size, pressure
difference, and geometry and surface roughness of the cracks, since
they involve direct measurements of particle concentrations at the
crack entrances and exits without interfering with airflow field and
the measurement of flow rate. However, laboratory experiments
are constrained to study systems that are more idealized than the
reality (Nazaroff, 2004).
4. Modeling study review

4.1. Modeling methods

In this section we evaluate the models of the penetration factor
only since most studies on I/O ratio and infiltration factor are based
on experimental data.

taobao
高亮

taobao
高亮

taobao
高亮

taobao
高亮

taobao
高亮

taobao
高亮

taobao
高亮

taobao
高亮

taobao
高亮

taobao
高亮

taobao
高亮

taobao
高亮



C. Chen, B. Zhao / Atmospheric Environment 45 (2011) 275e288 283
4.1.1. Airflow through cracks
Because the motion of particles depends on air flow through

cracks, all models are based on the relationship between pressure
difference and air velocity distribution. Airflow in cracks can be
assumed as laminar due to the small size of cracks and low air flow
speed in the cracks. Baker et al. (1987) developed a quadratic
expression to approximate the relationship between pressure
difference and flow rate:

DP ¼ 12mz
d2

um þ rð1:5þ nbÞ
2

u2m; (12)

where z is the crack length, d is the crack height, w is the crack
width, um is the average velocity of air in the crack, m is the dynamic
viscosity of air, r is the air density and nb is the number of right-
angle bends in the crack. The air velocity along the cracks can be
calculated from an analytical solution of laminar airflow (Taubee
and Yu, 1975).

uy
um

¼ 3
2

�
1� 4

�y
d

�2�
; (13)

where y is absolute vertical distance from the ceiling or floor
surface of the crack. An alternative approach for obtaining the
relationship between pressure difference and air velocity distri-
bution is the computational fluid dynamics (CFD) approach (Zhao
et al., 2010).

4.1.2. Particle penetration through cracks
There are three major deposition mechanisms controlling

particle deposition for particles penetrating through cracks: grav-
itational setting, Brownian diffusion, and inertial impaction. Based
on the particle deposition mechanisms of gravitational settling,
Fuchs (1964) applied a flow equation to derive the penetration
factor for a channel flow:

P ¼ 1� z
d

vs
um

; (14)

where vs is the gravitational settling velocity of particles. Some
researchers adopted this same model in their studies (Walton,
1954; Pich, 1972; Wang, 1975).

Licht (1980) proposed a similar method that calculated pene-
tration factor by:

332 � 233 ¼ z
d

vs
um

; (15)

P ¼ 1� 3; (16)

where 3 is the deposition ratio.
Based on the particle deposition mechanisms of gravitational

setting and Brownian diffusion, Taubee and Yu (1975) solved the
particle transport equation for steady-state laminar flow in cracks
to calculate the particle penetration factor:

u
vC
vx

þ vs
vC
vy

¼ D
v2C
vy2

; (17)

where C is the particle concentration, u is the airflow velocity, D is
the particle Brownian diffusivity, and x and y denote the horizontal
and vertical axis respectively. These three models have been
reviewed and compared by Jeng et al. (2003).

Based on all the three deposition mechanisms, Liu and Nazaroff
(2001) developed a mathematical model to calculate the particle
penetration factor through building cracks, which has been applied
by Riley et al. (2002) as shown below:
P ¼ Pg � Pd � Pi: (18)

Pg, Pd and Pi represent the particle deposition rate due to mecha-
nisms of gravitational settling, Brownian diffusion and inertial
impaction respectively. Pg can be calculated according to Eq. (14),
and Pd can be obtained through the following equation (De Marcus
and Thomas, 1952):

Pd ¼ 0:915 expð� 1:885fÞ þ 0:0592 expð� 22:3fÞ
þ 0:026 expð� 152fÞ þ/; (19)

f ¼ 4Dz
d2um

; (20)

It was found that inertial impaction was not an important deposi-
tion mechanism for particle penetration through cracks (Liu and
Nazaroff, 2001). A similar model was applied by Mosley et al.
(2001), whose Pd was calculated by the following expression (Lee
and Gieseke, 1980):

Pd ¼ exp

 
� 1:967Dz

h2um

!
; (21)

The study by Tian et al. (2009) presented a similar model to
calculate particle penetration factor incorporating the influence of
surface roughness.

Zhao et al. (2010) developed three different models to predict
the particle penetration through a crack. The first one is an
analytical model that is based on solving an ordinary differential
equation of particle concentration in the boundary layer which can
be described as:

P ¼ exp
�
� vdz
umd

�
; (22)

vd ¼ i1:5vs

1� exp
h
vs
D

�
dp�d
2

�i � i ¼ 1 for floor surface
i ¼ �1 for ceiling surface

; (23)

The second model developed by Zhao et al. (2010) is a Eulerian
model that solves the particle mass conservation/transport equa-
tion numerically. Then the particle penetration factor can be
calculated by:

P ¼

Z
uðyÞCðxz; yÞdAZ

uðyÞdA
CN

; (24)

where C(xz, y) is the particle concentration distribution at the outlet
of the cracks and CN is particle concentration at the inlet of the
cracks.

The third model by Zhao et al. (2010) is a Lagrangian model that
calculates the trajectory of each particle by integrating the force
balance on each particle, which is written as:

d u!p

dt
¼ FD

	
u!� u!p


þ g!x

�
rp � r

�
rp

þ*Fx; (25)

where u! is the fluid phase velocity, u!p is the particle velocity, r
is the fluid density, rp is the particle density, g!x is the gravitational
acceleration and F

!
x is an additional acceleration (force/unit

particle mass) term. Then particle penetration factor can be
obtained by:
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Table 1
Comparison of gravitational settling velocity and deposition velocity caused by
thermophoresis (crack height: 0.25 mm, temperature difference between wall and
air: 10 �C).

Particle diameter
(mm)

Gravitational settling
velocity (m s�1)

Deposition velocity casued
by thermophoresis (m s�1)

0.01 6.75E�08 1.78E�03
0.1 8.69E�07 1.66E�03
1 3.51E�05 1.12E�03
10 3.06E�03 2.64E�04

4Pa, d = 0.25 mm, z = 4.3 cm
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Fig. 9. Comparison of model predictions with experimental data for aluminum cracks
(Fig. 2 in Zhao et al., 2010).
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P ¼ Nescape

Ntotal
; (26)

where Nescape is the escaped particles at the outlet, and Ntotal is the
total particles released at the crack inlet.

Zhao et al. (2010) compared four recent penetration models, i.e.
Liu and Nazaroff (2001) model, Analytical, Eulerian and Lagranian
model by Zhao et al. (2010). Fig. 9 shows the comparison results of
penetration factor through a single straight aluminum (smooth)
crack using these four models. The pressure difference was set at
4 Pa. The crack length, the dimension parallel to the airflow direc-
tion, was 4.3 mm. The crack heights, perpendicular to the flow
direction, were set at 0.25 mm. Particles were assumed to be
spherical with a density of 1 g cm�3 and with a broad range of
particle diameters, 0.01e10 mm. Inferring from the results, it could
be found that the results predicted by Liu and Nazaroff (2001)
model, Analytical and Eulerian model by Zhao et al. (2010) gener-
ally agree well with the experimental results. Nevertheless, the
predicted results by the Lagrangian model agree worst for ultrafine
particles (dp< 0.1 mm). The most plausible reason for the poor
performance is that the Lagrangian approach models a weaker
effect of the Brownian diffusion (Zhao et al., 2010). Holding the
same view, Robinson et al. (1997) suggested that the Lagranian
model was unable to model molecular diffusion. More comparisons
of the models for predicting penetration factor could be found in
Zhao et al. (2010).
4.2. Discussion on application of modeling methods

These models can be used for studying particle penetration
through cracks in building envelopes in certain suitable conditions.
The models developed by Fuchs (1964) and Licht (1980) only
consider the gravitational setting mechanism, thus they are only
suitable for modeling large particles. The models developed by
Taubee and Yu (1975), Liu and Nazaroff (2001) and the analytical
model developed by Zhao et al. (2010) are suitable for modeling
both large and ultrafine particles. These models, which assume that
particles are homogeneously and uniformly distributed at the crack
entrance, are quite simple, but they are only suitable for straight
cracks. When the studied geometry of cracks is more complicated,
the numerical modeling approach is always preferred to study the
particle penetration factor. Therefore, the Eulerian model and
Lagragian model developed by Zhao et al. (2010) are more suitable
for complicated cases. Additionally, these two models are more
flexible as they can incorporate different deposition mechanisms in
cracks under different conditions.

Another possible application of these particle penetration factor
models is to assist in indoor environment design. When designers
want to know how much ventilation or what kind of air cleaner
a building should use for removing contaminated particles, they
need to know howmany outdoor contaminated particles penetrate
through the cracks in the envelope into the indoor environment,
which may be done by modeling investigation. However, cracks in
real buildings are extremely complex and vary from one building to
the next. It is difficult tomeasure the exact geometry of the cracks in
real buildings in most cases, which is significant for the penetration
prediction. Therefore, the value of models for particle penetration
through cracks is to explain dependencies of influencing factors,
rather than to predict penetration accurately in practical situations.
4.3. Discussion on model improvement

In many areas, the temperature difference between the
outdoors and indoors can be very substantial, especially in winter
or summer. When a temperature gradient exists, particles may be
influenced by an additional drift force caused by thermophoresis
(Hinds, 1982). For fine or ultrafine particles, this thermophoresis
force may affect the penetration through cracks in building enve-
lopes. Table 1 shows the comparison of gravitational settling
velocity and deposition velocity caused by thermophoresis (calcu-
lated according to the equation suggested by Talbot et al., 1980) for
particles with diameter in the range of 0.01e10 mm. The crack
height was set as 0.25 mm and the temperature difference between
wall and air was set as 10 �C, which may be typical for a real
building/house. In this case, the gravitational settling velocity for
10 mm particles is in the order of 10�3 m s�1, which can strongly
affect the penetration process. On the other hand, the deposition
velocities caused by thermophoresis for 0.01e1 mm particles are
also in the order of 10�3 m s�1, which means that the influence of
thermophoresis force may be significant in this case. However,
existing models do not incorporate the influence of the thermo-
phoresis force, so this is an area which can be improved.

Since the outdoor wind environment is highly unstable, airflow
infiltration is unsteady with a wide range of fluctuation frequen-
cies, which may result in unsteady indoor air concentrations. The
impact of airflow fluctuation on particle penetration may be quite
influential. However, the way in which airflow fluctuation in cracks
in building envelopes affects particle penetration cannot be
modeled by existing models. Therefore, incorporating airflow
fluctuation into existing models is another improvement point.
5. Discussion

In addition to transmission by ventilation and infiltration,
outdoor airborne particles can be also brought into indoor envi-
ronments by humans. Outdoor particles can migrate to indoor
environments via soil adhering to footwear and then undergoing
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resuspension into the air (Layton and Beamer, 2009), which can
affect human health. However, the amount of outdoor particles
entering into indoor environments in this way is unclear and is also
an area of further study.

Except for deposition and filtration, other processes can influ-
ence the behavior of the entry of outdoor particles to indoors. For
instance, phase change processes (e.g., with aerosol nitrate) and
coagulation in some cases can influence the extent to which
outdoor particles influence indoor levels, which should be further
studied.
6. Conclusions

This paper provides an up-to-date revision for both experiment
and modeling on relationship between indoor and outdoor parti-
cles. The use of three different parameters: I/O ratio, infiltration
factor and penetration factor, to assess the relationship between
indoor and outdoor particles were reviewed. From this work,
several conclusions were achieved:

1) The I/O ratio can provide a general impression on the rela-
tionship between indoor and outdoor particle concentration,
nevertheless, it varies in an enormous range as it is affected by
many influencing factors. Through comparing different studies,
no uniform conclusions can be draw, which strongly demon-
strates that the I/O relation is not useful in understanding
indoor/outdoor particle relationships.

2) Infiltration factor, which avoids the influence of indoor sources,
is quite useful for qualifying the amount of indoor particles that
contributed by outdoor environment. However, it is difficult to
reflect the process of outdoor particles entering to indoors
through buildings.

3) Among the three parameters, the most relevant parameter for
the penetration mechanism through cracks is the penetration
factor. The experimental results of penetration factor show
that the coarse particle data measured in the real buildings
only match the ones which are under the condition of higher
pressure difference or larger crack height measured in the
laboratories, whose definite reason is unclear. The existence
of vertical cracks in real buildings may be an explanation for
that.

4) For penetration factor models, the results predicted by Liu and
Nazaroff (2001) model, Analytical and Eulerian model by Zhao
et al. (2010) generally agree well with the experimental results.
Nevertheless, the predicted results by the Lagrangian model
agree worst for ultrafine particles (dp< 0.1 mm). Furthermore,
we feel that the influence of thermophoresis force and airflow
fluctuation should be incorporated into the existing models
and then further studied.
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